天文望远镜(观测天体的工具)
天文望远镜(Astronomical Telescope)是观测天体的重要工具,可以毫不夸张地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。
中文名天文望远镜
观测天体的重要工具
Astronomical Telescope
主镜、寻星镜
可见区有良好的透射
超强
伽利略式望远镜
1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。[2]他是用平凸透镜作为物镜,凹透镜作为目镜,
这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。
开普勒式望远镜
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。
需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年在美国叶凯士天文台建成的口径102厘米望远镜和1886年在德国里克天文台建成的口径91厘米望远镜。
折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。
表示方法
基本方法
倍率x物镜口径(直径,mm),不同类型的望远镜的规格表示方法只有一些细小的差距,但都不脱离这个模式。
倍率
望远镜的倍率:一架望远镜的倍率是指望远镜拉近物体的能力,如使用一具7倍的望远镜来观察物体,观察到的700米远的物体的效果和肉眼观察到的100米远的物体的效果是相似的(当然,由于环境的影响效果要差一些)。很多人总认为倍率越高越好,一些经销商和厂家也以虚假的高倍来吸引、欺骗消费者,市场上有些望远镜比如说口径80mm焦距900mm竟然标为990倍!实际上,一架望远镜的合理倍率是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,带支架的的可以比手持的高些。
倍率越大,稳定性也就越差,观察视场就越小、越暗,其带来的抖动也大增加,呼吸的气流和空气的波动对其影响也就越大。手持观测的双筒望远镜,7-10倍之间是最合适的,最好不要超过12倍,如果望远镜的倍率超过12倍,那么手持观察将会很不方便。世界各国军用的望远镜也大多以6-10倍为主,如中国的军用望远镜主要是7倍和8倍的,这是因为清晰稳定的成像是非常重要的。
视场
视场(Field of view)是指在一定的距离内观察到的范围的大小。视场越大,观测的范围就越宽广越舒适,视场一般用千米处视界(可观测的宽度)和换算成角度(angle of view)来表示,常见的有三种表示方法:一是直接用角度,如angle of view:9°;二是千米处的可视范围,如Field of view:158m/1000m;三是千码处英尺,实际上和第二种差不多,如Field of vies:288ft/1000y.一般来讲,口径越大,倍率越低,视场就越大,但目镜组的设计也很关键。
出瞳直径
出瞳直径就是影像通过望远镜后在目镜上形成的光斑大小,出瞳直径可以用下面公式得出:物镜口径/倍率=出瞳直径。由此可以看出物镜越大、倍数越低,出瞳直径就越大。从理论上讲,出瞳直径越大,所观测到的景物就越明亮,有利于暗弱光线下的观测。因此在选购望远镜时应尽量选择出瞳直径大些的,那么是否越大越好呢?也不是,因为我们正常使用望远镜时大都在白天,这时人眼的瞳孔很小,只有2-3毫米左右,这时如果使用出瞳直径大的如4毫米以上的,则大部分有用光线并不被人眼吸收,反而浪费。人眼只有在黄昏或黑暗时瞳孔才能达到7毫米左右。因此一般情况下使用选择出瞳直径不低于3毫米的就可以了。所以出瞳直径又称为黄昏因数。
镀膜作用
镜片镀膜的作用是为了防止光线在镜片上面反射的漫射光造成的薄雾般的白茫茫现象,养活反光,使透光率增加,增加色彩的对比度、鲜明度,提高观测效果。一般镀膜层越多、越深、越厚的,观赏效果越好,亮度越高。镀膜的颜色需根据光学材料及设计要求而定,镀膜越淡、反光越小越好,平常使用最多的蓝膜和红膜,蓝膜是一种传统的镀膜,红膜是从上个世纪上半期出现的。很多人认为红膜比蓝膜好,市场上有很多反光很强、亮闪闪的红膜望远镜,一些经销商把这种镀膜称为“红外线”“次红外线”“红宝石镀膜”等等,最后会告诉这是全天候的、能在夜间观察的红外线夜视望远镜,千万不要上当。
真正的红外线夜视仪是光电管成像,与望远镜结构和原理完全不同,白天不能使用,需要电源才能观察。其实当光线穿透玻璃时,将无可避免的造成一些反射而降低亮度,镀红膜后因为反射严重亮度降低更多,这类望远镜正常是在雪地上阳光强烈照耀刺眼时,降低亮度所使用,在正常情况下使用,蓝膜是比较好,绿色就更优秀的(好多名牌摄像机和照相机镜头都是采用镀蓝膜,就是这个道理)。
结构
主镜筒
主镜筒是观测星星的主要部件。
寻星镜
主镜筒通常都以数十倍以上的倍率观测星体。在找星星时,如果使用数十倍来找, 因为视野小,上海天文台要用主镜筒将星星找出来, 可没那么简单,因此我们就使用一支只有放大数倍的小望远镜, 利用它具有较大视野的功能,先将要观测的星星位置找出来, 如此就可以在主镜筒,以中低倍率直接观测到该星星。
目镜
如果一部天文望远镜缺少了目镜, 就没有办法看星星。目镜的功用在于放大之用。通常一部望远镜都要配备低,中和高倍率奇观三种目镜。
赤道仪赤道仪是一种可以跟踪星星, 长时间观测星星的装置。赤道仪有许多种形式,我们经常看到的是德国式的赤道仪.赤道仪分成赤经轴和赤纬轴, 其中重要的是赤经轴。在使用上,必须先将赤经轴轴心对准天球北极点, 当找到星星之后,开启追踪马达, 锁住离合器,即可追踪星星。为了方便赤经轴对准北极星,北京天文馆在赤经轴中心装置了一支小望远镜,叫做极轴望远镜。在赤经和赤纬轴上, 有大和小微调,它们的功用是在于找辅助找星星之用。
经纬台
经纬台马达可以驱动赤经轴,寻找并以跟地球自转相同的角速度逆向转动,跟踪星星, 将星体长时间保持在视野中观测。此外,也可以利用较快的速度寻找欲观测的星星,以及增减速上海气象来做天文摄影的功能。赤纬追踪马达的功用是当观测中的星体偏离视野中心,寻找星体和天文摄影时, 做调整及修正之用。一般赤道仪应有赤经马达,若需要长时间的摄天文影, 就同时需要赤经和赤纬马达。
三脚架台和脚架
三脚架台是承接赤道仪和镜筒,以连接脚架用的, 脚架是承载望远镜和赤道仪,并且做为一种使用的支柱。小型赤道冰河时代3仪通常使用三脚架, 较重的赤道仪,则为单柱脚。
赤道仪控制盒和电源
赤道仪要能运转, 就必须要使用电源,驱动追踪马达工作。一般可携带型式的赤梅雨歌道仪, 都要购置干电池或蓄电池,适合野外山区的使用。赤道仪的控制盒设计有许多种功能, 如此才能观测星体,寻找星体和从事天文摄影等的需求。
参考资料1.天文望远镜使用步骤·聚优网
2.天文学年会称史上首台天文望远镜流落广州·央视网