角点检测(图像处理方法)

角点检测图像处理方法

目前的角点检测算法可归纳为3类:基于灰度图像的角点检测、基于二值图像的角点检测、基于轮廓曲线的角点检测。角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。对灰度图像、二值图像、边缘轮廓曲线的角点检测算法进行综述,分析了相关的算法,并对各种检测算法给出了评价。

中文名

角点检测

类型

基于轮廓曲线的角点检测

优点

算法简单、位置准确

提出者

Smith和Brady

算法

SUSAN是Smith和Brady提出的一种图像处理方法,该算法是基于像素领域包含若干元素的近似圆形模板,对每个像素基于该模板领域的图像灰度计算角点响应函数(CRF)的数值,如果大于某阈值且为局部极大值,则认为该点为角点。

角点的精度与圆形模板大小无关,圆形模板越大,检测的角点数越多,则计算量也越大。

对于图像中非纹理区域的任一点,在以它为中心的模板窗中存在一块亮度与其相同的区域。

这块区域即为SUSAN的USAN(Univalve Segment Assimilating Nucleus)区域。USAN区域包含了图像结构的重要信息,由图可知,当模板中心像素点位于区域内部时,USAN的面积最大,当该像素点位于区域边界时,则面积为最大的一半,当该像素点为角点时,USAN区域面积约为最大的1/4。SUSAN根据不同位置时USAN区域的面积来考察当前像素点为区域内部点、边缘点或角点。

技术综述

角点,通常可理解为两条边的角点,也可理解为像素值在多个方向有显著变化的点或局部区域内某个属性明显的点。如多个轮廓的交界处的点、轮廓边缘凸出的点等。[1]

角点没有明确的数学定义,但人们普遍认为角点是二维图像亮度变化剧烈的点或图像边缘曲线上曲率极大值的点。这些点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。其在三维场景重建、运动估计、目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。

角点检测算法可以说各种各样。一般使用者仅仅要求得到一个准确的角点检测结果或该检测算法易于编程实现,满足实际后续匹配等应用需要。

参考资料

1.Harris角点检测原理及实现·码农教程

关键词:角点检测