复利(计算利息的方法)
复利,Compound interest,是一种计算利息的方法。按照这种方法,利息除了会根据本金计算外,新得到的利息同样可以生息,因此俗称“利滚利”、“驴打滚”或“利叠利”。只要计算利息的周期越密,财富增长越快,而随着年期越长,复利效应也会越来越明显。
中文名复利
金融计算
经济学;金融学
利滚利;以利生利;驴打滚;息上息
解释
复利 [fù lì]- {经} compound interest[1]
复利终值
由本金和前一个利息期内应记利息共同产生的利息。即由未支取利息按照本金的利率赚取的新利息,常称息上息、利滚利,不仅本金产生利息,利息也产生利息。复利的计算公式是:
其中:P=本金;i=利率;n=持有期限
普通年金终值
普通年金终值:指一定时期内,每期期末等额收入或支出的本利和,也就是将每一期的金额,按复利换算到最后一期期末的终值,然后加总,就是该年金终值。
例如:每年存款1元,年利率为10%,经过5年,逐年的终值和年金终值,公式为:F=A[(1+i)^n-1]/i,记作F=A(F/A,i,n)。
推导如下:
一年年末存1元
2年年末的终值=1*(1+10%)=(1+10%)
2年年末存入一元
3年年末的终值=1*(1+10%)^2+1*(1+10%)=(1+10%)^2+(1+10%)
3年年末存入一元
4年年末的终值=1*(1+10%)^3+1*(1+10%)^2+1*(1+10%)=(1+10%)^3+(1+10%)^2+(1+10%)
4年年末存入一元
5年年末的终值=1*(1+10%)^4+1*(1+10%)^3+1*(1+10%)^2+1*(1+10%)=(1+10%)^4+(1+10%)^3+(1+10%)^2+(1+10%)
5年年末存入一元年金终值F=(1+10%)^4+(1+10%)^3+(1+10%)^2+(1+10%)+1
如果年金的期数很多,用上述方法计算终值显然相当繁琐.由于每年支付额相等,折算终值的系数又是有规律的,所以,可找出简便的计算方法。
设每年的支付金额为A,利率为i,期数为n,则按复利计算的年金终值F为:
F=A+A×(1+i)^1+…+A×(1+i)^(n-1),
等比数列的求和公式
F=A[1-(1+i)^n]/[1-(1+i)]
F=A[1-(1+i)^n]/[1-1-i]
F=A[(1+i)^n-1]/i式中[(1+i)^n-1]/i的为普通年金终值系数、或后付年金终值系数,利率为i,经过n期的年金终值记作(F/A,i,n),可查普通年金终值系数表。
例如:一个投资者每年都将积蓄的50000元进行投资,每年都能获得3%的回报,他将这些本利之和连同年金再投入新一轮的投资,那么,30年后,他的资产总值将变为:F=50000×[(1+3%)^30-1 ] / 3%=2378770.79
其他资料
复利教育是一种新型的思维教育模式,它更强调做事要首先给自己定个目标。这个目标最好可以数据量化。它应用最多的地方是理财规划和职业规划。这种教育方式和传统教育方式相比,具有很大的优势,比如目标明确,强调毅力的重要性。21世纪必定是复利教育盛行的世纪,传统教育方式终将被它取代。
参考资料1.复利·海词词典网