极大值(数学术语)
函数在某个极小区间内,存在自变量取值x,且存在比其大与比其小的自变量,这些自变量所对应的函数值均小于x对应的函数值。那么此函数值称为极大值。极大值可以小于极小值。
中文名极大值
jí dà zhí
ㄐㄧˊ ㄉㄚˋ ㄓㄧˊ
词语
定义
一般的,设函数f(x)在点x0附近有定义,
(1)如果对x0附近的所有点,都有f(x);
(2)如果对x0附近的所有点,都有f(x)>f(x0),则f(x0)是函数f(x)的一个极小值,如图2所示;
(3)函数的极大值与极小值统称为极值。(极值即波峰波谷处的值——不一定是最大值或最小值)。
(4)使得函数取得极值的点x0称为极值点。使得函数取得极大值的点x0称为极大值点;使得函数取得极小值的点x0称为极小值点。
注意
(1)极大值、极小值是一个局部概念。由定义,极大值、极小值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小,因此,极大值、极小值不同于最大值、最小值。
(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个。
(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,极小值也未必小于极大值。
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
求解方法
1、找到等式f'(x)=0的根
2、在等式的左右检查f'(x)值的符号。如果为负数,则f(x)在这个根得到最大值;如果为正数则f(x)在这个根得到最小值。
3、判断f'(x)无意义的点。首先可以找到f'(x)=0的根和f'(x)的无意义点。这些点被称为极点,然后根据定义来判断。
4、函数z=f(x,y)的极值的方法描述如下:
(1)解方程式fx(x,y)=0,fy(x,y)=0,求一个实数解,可以求所有的塞音;
(2)对于每个停止点(x0,y0),找到二阶偏导数的值a,b,c;
(3)确定ac-b2的符号,并根据定理2的结论确定f(x0,y0)是一个最大值、最大值还是最小值[1]。
参考资料1.函数的极值·高三网