α衰变(放射α粒子的核衰变过程)
α衰变,是一种放射性衰变(核衰变);发生α衰变时,一颗α粒子会从原子核中射出;α衰变发生后,原子核的质量数会减少4个单位,其原子序数也会减少了2个单位。α衰变是一种核裂变,当中涉及量子物理学中的隧穿效应,和β衰变不同的是α衰变是由强核力力场产生和控制。α粒子是电荷数为2、质量数为4的氦核He。1896年A.-H.贝可勒尔发现放射性后,人们花了很大力量研究α衰变。E.卢瑟福和他的学生经过整整10年的努力,终于在1908年直接证明了α粒子就是氦原子核 He-4。α衰变中放出的能量称为α衰变能。衰变能可以通过衰变前后的原子核的静止质量之差计算而得到。
中文名α衰变
阿尔法衰变
Z
Y
A
放射性衰变
产生机制
为什么α粒子能从原子核中发射出来,为什么α衰变具有一定半衰期,为什么半衰期同α粒子能量有强烈的依赖关系,这些都是人们十分感兴趣的问题。计算表明,α粒子和子核之间的库仑势垒一般高达20兆电子伏以上。如前所述,α粒子动能比库仑势垒高度低得多,按照经典力学,由于库仑势垒的阻挡,α粒子不能跑到核外,根本不可能发生α衰变。20世纪20年代发展起来的量子力学能成功地解释 α衰变的产生机制。根据量子力学的隧道效应,α粒子有一定的几率穿透势垒跑出原子核。描述势垒穿透几率P的伽莫夫公式是
式中V(r)是α粒子和子核的相互作用势,E是相对运动动能,μ是α粒子和子核的约化质量,Rc是α粒子与子核的半径之和,R是V(r)=E时的r值。可见,α粒子的能量E越大,穿透势垒的几率就越大,衰变几率就越大,从而半衰期就越短。由于能量因子出现在伽莫夫公式的指数幂上,因而它的微小变化将引起衰变常数的巨大变化。这就解释了实验上观察到的α衰变半衰期随α粒子能量变化而剧烈变化的规律。利用势垒穿透来解释 α衰变是用量子力学研究原子核的最早成就之一。
半衰期
不同 核素α衰变的半衰期分布较广,从1微秒(μs)到1017秒(s),一般的规律是衰变能较大,则半衰期较短;反之,衰变能较小,则半衰期较长。衰变能的微小改变,引起半衰期的巨大变化。α衰变是量子力学隧道效应的结果,半衰期随衰变能变化的规律可以根据 隧道效应予以说明。计算表明,α粒子和 子核的库仑势垒高达20MeV,α粒子的能量虽小于此值,但由于隧道效应,α粒子有一定的几率穿透势垒,跑出原子核。α粒子的能量越大,穿透势垒的几率越大,即衰变几率越大,从而半衰期越短。由于能量因子出现在指数上,因而它的微小变化,引起半衰期的巨大变化。这是量子力学研究原子核的最早成就之一。
α衰变主要限于一些重核素。α衰变能谱的研究提供了核结构的信息。α 衰变常数的定量计算直到目前还没有得到圆满解决。尤其对于奇 核和奇奇核,实验值可以比理论值小几个数量级。这主要有赖于所谓α形成 因子的计算。研究表明:α粒子不大可能在α衰变前就存在于核内,而是在衰变过程中形成的。因此,在计算衰变常数时,必须乘上一个有关α粒子形成几率的因子,通常称它为α形成因子。显然,α形成因子应该和原子核的结构有关。正因为如此,对α衰变的深入研究可进一步了解原子核内部结构的运动规律。
参考书目
卢希庭主编:《原子核物理》,原子能出版社,北京,1981。
P.Marmier and E.Sheldon,Physics of Nuclei and Particles,Academic Press,New York and London,1969.
参考资料1.原子核衰变·仪器网