洛必达法则(求极限的法则)
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
中文名洛必达法则
L'Hospital's rule
约翰·伯努利
学科分类
数学,微积分
确定未定式值的一种特殊方法
分子分母同时求导
定理推导
由于函数在a点的去心邻域可导,也就是说函数在这个a的去心邻域内连续。那么我们套用柯西中值定理,在x趋向于a时,可以得到在区间(a,x)内找到一个点,使得:
到这里还差一点,因为还少了一个条件,书上的解释是由于函数比值的极限与函数值无关,所以可以假设f(a)和F(a)等于0。我个人觉得这样有些不厚道,就和证明过程里写易证、易得是一样的。其实我们只要将这两做差,证明一下差值等于0即可。
通分之后,可以得到:
到这里,不难看出来,当x趋向于a的时候,上面的差值趋向于0,所以:
由于x趋向于a的时候,也趋向于a,那么我们就得到了:[3]
定理推广
洛必达法则是可以嵌套使用的。原因很简单,只要我们把f'(x)看成是新的f(x),F'(x)看成是新的F(x),那么我们可以继续使用洛必达法则。也就是说,我们可以得到:
当然使用嵌套也存在前提,前提就是二阶导数存在,并且。同样的道理,只要高阶导数存在,并且分母不为0,我们可以一直嵌套下去。所以洛必达法则也可以称为套娃法则。[3]
应用条件
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
定理意义
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。求极限的方法有很多,其中之一是用洛必达法则求解未定式“00”型与“∞∞”型,洛必达法则定理如果
⑴lim(x→x0)(x→∞)f(x)=0(或∞),lim(x→x0)(x→∞)g(x)=0(或∞);
⑵在点x0的某去心邻域内(或|x|>X),f′(x)及g′(x)都存在且g′(x)≠0;
⑶lim(x→x0)(x→∞)f′(x)g′(x)存在(或为无穷大),那么有lim(x→x0)(x→∞)f(x)g(x)=lim(x→x0)(x→∞)f′(x)g′(x)=A(A为有限值或无穷大)。
参考资料1.洛必达法则公式及条件·高三网
2.洛必达法则·知网百科
3.高等数学——详解洛必达法则·知乎