超临界流体(兼有气体液体的双重性质和优点的物质)
物质的状态一般为固体、液体、气体,同时超过临界点(Tc、Pc)的状态被称为超临界流体,兼具气体的性质(高扩散性)与液体的性质(物质溶解力)。超临界流体技术也是一项备受关注的环保型技术,可以发挥超临界流体的特性,在医药品和食品等领域用作环境负荷较高的有机溶剂的替代品,并且在半导体和MEMS等领域用作超微细部位的清洗干燥溶剂。
中文名超临界流体
supercritical fluid
流体
粘度小、密度、扩散系数
粘度和扩散系数接近气体
定义
纯净物质要根据温度和压力的不同,呈现出液体、气体、固体等状态变化。在温度高于某一数值时,任何大的压力均不能使该纯物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度下,气体能被液化的最低压力称为临界压力Pc。在临界点附近,会出现流体的密度、粘度、溶解度、热容量、介电常数等所有流体的物性发生急剧变化的现象。当物质所处的温度高于临界温度,压力大于临界压力时,该物质处于超临界状态。
性质
超临界流体由于液体与气体分界消失,是即使提高压力也不液化的。
非凝聚性气体。超临界流体的物性兼具液体性质与气体性质。它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。其密度比一般气体要大两个数量级,与液体相近。它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。另外,根据压力和温度的不同,这种物性会发生变化。
优点
超临界流体是处于临界温度和临界压力以上,介于气体和液体之间的流体,兼有气体液体的双重性质和优点:
1、溶解性强
密度接近液体,且比气体大数百倍,由于物质的溶解度与溶剂的密度成正比,因此超临界流体具有与液体溶剂相近的溶解能力。
2、扩散性能好
因黏度接近于气体,较液体小2个数量级。扩散系数介于气体和液体之间,为液体的10-100倍。具有气体易于扩散和运动的特性,传质速率远远高于液体。
3、易于控制
在临界点附近,压力和温度的微小变化,都可以引起流体密度很大的变化,从而使溶解度发生较大的改变。(对萃取和反萃取至关重要)
原理
物质在超临界流体中的溶解度,受压力和温度的影响很大。可以利用升温,降压手段(或两者兼用)将超临界流体中所溶解的物质分离析出,达到分离提纯的目的(它兼有精馏和萃取两种作用)。例如在高压条件下,使超临界流体与物料接触,物料中的高效成分(即溶质)溶于超临界流体中。分离后降低溶有溶质的超临界流体的压力,使溶质析出。如果有效成分(溶质)不止一种,则采取逐级降压,可使多种溶质分步析出。在分离过程中没有相变,能耗低。
应用
超临界流体萃取(supercritical fluid extraction,简称SFE)、超临界水氧化技术、超临界流体干燥、超临界流体染色、超临界流体制备超细微粒、超临界流体色谱(supercritical fluid chromat ography)和超临界流体中的化学反应等,但以超临界流体萃取应用得最为广泛。
很多物质都有超临界流体区,但由于CO2的临界温度比较低(31.06℃),临界压力也不高(7.38MPa),且无毒,无臭,无公害,所以在实际操作中常使用CO2超临界流体。如用超临界CO2从咖啡豆中除去咖啡因,从烟草中脱除尼古丁,从大豆或玉米胚芽中分离甘油酯,对花生油、棕榈油、大豆油脱臭等。又例如从红花中提取红花甙及红花醌甙(它们是治疗高血压和肝病的有效成分),从月见草中提取月见草油(它们对心血管病有良好的疗效)等。
使用超临界技术的唯一缺点是涉及高压系统,大规模使用时其工艺过程和技术的要求高,设备费用也大。但由于它优点甚多,仍受到重视。超临界流体密度很大,具有溶解性能。在恒温变压或恒压变温时,体积变化很大,改变了溶解性能,故可用于提取某些物质,这种技术称为超临界流体萃取。
在超临界水中,易溶有氧气,可使氧化反应加快,可将不易分解的有机废物快速氧化分解,是一种绿色的“焚化炉”。由于超临界流有密度大且粘稠度小的特点,可将天然气转化为超临界态后在管道中运送,这样既可以节省动力,又可以增加运输速率。
超临界二氧化碳具有低粘稠度、高扩散性、易溶解多种物质、且无毒无害,可用于清洗各种精密仪器,亦可代替干洗所用的氯氟碳化合物,以及处理被污染的土壤。
超临界二氧化碳可轻易穿过细菌的细胞壁,在其内部引起剧烈的氧化反应,杀死细菌。
超临界水具有非常强的极性,可以溶解极性极低的芳烃化合物及各种气体(氧气、氮气、一氧化碳、二氧化碳等),能够促进扩散控制的反应速率,具有重要的工程意义。
通入有机废物进行氧化反应,即超临界水氧化法(supercritical water oxidation,SCWO)。其结果是有机废物被完全氧化成二氧化碳、氮气、水及可以从水中分离的无机盐等无毒的小分子化合物,达到净水的目的。
发展史
超临界流体具有溶解其他物质的特殊能力,1822年法国医生Cagniard首次发表物质的临界现象,并在1879年即被Hannay和Hogarth二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出。但在当时由于技术,装备等原因未能更加深入地研究。
时至20世纪30年代,Pilat和Gadlewicz两位科学家才有了用液化气体提取“大分子化合物”的构想。1950年代,美,苏等国即进行以超临界丙烷去除重油中的柏油精及金属,如镍,钒等,降低后段炼解过程中触媒中毒的失活程度,但因涉及成本考量,并未全面实用化。
1954年Zosol用实验的方法证实了二氧化碳超临界萃取可以萃取油料中的油脂。此后,利用超临界流体进行分离的方法沉寂了一段时间,70年代的后期,德国的Stahl等人首先在高压实验装置的研究取得了突破性进展之后,“超临界二氧化碳萃取”这一新的提取,分离技术的研究及应用,才有实质性进展。
1973及1978年第一次和第二次能源危机后,超临界二氧化碳的特殊溶解能力,才又重新受到工业界的重视。
1978年后,欧洲陆续建立以超临界二氧化碳作为萃取剂的萃取提纯技术,以处理食品工厂中数以千万吨计的产品,例如以超临界二氧化碳去除咖啡豆中的咖啡因,以及自苦味花中萃取出可放在啤酒内的啤酒香气成分。
超临界流体萃取技术近30多年来引起人们的极大兴趣,这项化工新技术在化学反应和分离提纯领域开展了广泛深入的研究,取得了很大进展,在医药,化工,食品及环保领域成果累累。
参考资料1.什么是超临界?·KISCO|原材料专业商社